
Map API - Scalable Decentralized Map Building for Robots

Titus Cieslewski, Simon Lynen, Marcin Dymczyk, Stéphane Magnenat and Roland Siegwart
Autonomous Systems Lab, ETH Zurich

Abstract— Large scale, long-term, distributed mapping is a
core challenge to modern field robotics. Using the sensory
output of multiple robots and fusing it in an efficient way
enables the creation of globally accurate and consistent metric
maps. To combine data from multiple agents into a global map,
most existing approaches use a central entity that collects and
manages the information from all agents. Often, the raw sensor
data of one robot needs to be made available to processing
algorithms on other agents due to the lack of computational
resources on that robot. Unfortunately, network latency and low
bandwidth in the field limit the generality of such an approach
and make multi-robot map building a tedious task. In this
paper, we present a distributed and decentralized back-end
for concurrent and consistent robotic mapping. We propose
a set of novel approaches that reduce the bandwidth usage
and increase the effectiveness of inter-robot communication
for distributed mapping. Instead of locking access to the map
during operations, we define a version control system which
allows concurrent and consistent access to the map data.
Updates to the map are then shared asynchronously with
agents which previously registered notifications. A technique
for data lookup is provided by state-of-the-art algorithms from
distributed computing. We validate our approach on real-world
datasets and demonstrate the effectiveness of the proposed
algorithms.

I. INTRODUCTION

In collaborative robotics tasks, and in particular in col-
laborative Simultaneous Localization and Mapping (SLAM),
data sharing between agents is a central issue. Imagine
a search and rescue scenario where we demand continu-
ous, real-time and in-field mapping. Because the chance of
finding survivors decreases over time, speed of mapping
is of paramount importance and obviously, using multiple
robots can heavily parallelize the mapping process. To avoid
mapping redundant areas and to make the most out of the
information captured by the agents, it is essential to have
efficient, low overhead communication between them. The
ultimate goal of distributed robotic mapping is to build a
global map that contains the joint estimate of both the state
of the environment and the robots.

A wide body of work in the area of multi-robot SLAM
focuses on distributed mapping and information sharing from
an estimation standpoint. Approaches such as the work of
Fox [1], Martinelli [2], Trawny [3] or more recently Carillo-
Arce [4] to name a few, demonstrated impressive results on
how robots can estimate their position in a common frame
of reference using a minimum amount of data exchange.

C2TAM [5] and CVSLAM [6] use an approach more
independent of the estimation algorithm by building a local
map of the environment on board the robots, then sending

Fig. 1: Map API provides a version control system for mapping data, a novel
concept of update notification, and spatial queries. It thus allows large scale
collaborative map-building for robots both in the cloud and in the field.

a subset of it to a central server where it gets fused into a
global map in which all robots can co-localize.

In contrast, RoboEarth [7], Rapyuta [8] and Map API,
which we propose in this paper, offer solutions to the ques-
tion of distributing data and computational work between
agents which we see as a foundation for any distributed
estimation algorithm. Instead of focusing on estimator con-
sistency we concentrate on the consistency, integrity and
availability of mapping data within the robotic swarm.

There is however a major challenge in the task of col-
laboratively building a metric map of the environment in a
distributed system: How can we fuse data asynchronously
into a global, but distributed map without having a central
authority that performs or approves changes to the com-
mon mapping data? Despite their decentralized architecture,
frameworks such as C2TAM [5] and CVSLAM [6] fall back
to a central entity for map assembly.

However, there are situations in which a map is best
built and maintained decentrally: Cunningham [9] as well
as Vidal-Calleja et al [10] follow a decentralized approach
in which data is owned by the agents that created it, assuming
that these agents are available during the scope of the
distributed mapping application. Both frameworks however
do not allow the integration of collected data into a common,
global map during the mapping-operation: The collaborating
entities in DDF-SAM [9] each have a well-maintained local
map and only share summarized maps with neighboring
agents. In the work of Vidal-Calleja et al [10], only a
high-level global map is shared and detailed maps can be
requested from individual agents. Instead, and this is the
main contribution of Map API, our framework allows agents
to collaboratively build a single global map without requiring
a central authority.

Furthermore data is not tied to any owner authority; in

contrast, agents using Map API can request and release data
co-ownership dynamically. Data persistence in Map API is
thus no longer limited by the availability of a single owner,
but rather by its perceived relevance among peers. Data in
the swarm can be localized using the concept of Distributed
Hash Tables (DHTs) [11].

In such a distributed system, modifications to data need to
be synchronized in a more complex way than is necessary
in a centralized system. Commonly, the shared map data
is locked for the time of a given operation to guarantee
consistency by serializing data-access by multiple peers [6].
Naturally, such systems rapidly degrade as operations take a
longer time or the number of peers increases. We therefore
propose a map version control system which allows access,
modification and additions to the map data by multiple
agents concurrently. In particular, we introduce the concept
of views, which allow access to the mapping data in the
state it has been at a given time without locking the map
data for the entire time of an operation. Views can be filled
selectively with data which is looked up using DHTs. After
changes are made, updates can be committed to the database.

Allowing concurrent access and modifications to the map
data means that conflicts can arise which need to be dynam-
ically resolved, typically using distributed consensus. The
simplest, yet limited approach to consensus is to average
conflicting values [12, 13]. Often however averaging multiple
solutions is not possible, for instance when a conflict exists
between discrete values such as update and deletion. In Map
API, we detect conflicts at commit time and let the user
implement a resolution algorithm of her choice to resolve
them. Doing this in a decentralized system is difficult and
has led us to implement a first version which is not robust
to unannounced peer departure. However, previous work in
Distributed Computing [14, 15] shows that this problem,
presumably very relevant for field robotics, can be solved.

Once consensus has been found, other agents need to be
notified about changes in the data, where pushing all changes
to all agents is infeasible. We therefore propose a system in
which agents can register a distributed notification request,
dubbed “Trigger”, about changes to the data in which they
are interested. The database literature knows triggers since a
long time [16] as a means of running a block of code when
a certain condition is met such as a change to data.

In summary we contribute a back-end for distributed,
decentralized mapping, which:

• Provides global data lookup without a central index.
• Allows agents to concurrently contribute to a common

global map through dynamic ownership of data, dis-
tributed consensus and a history on the data.

• Distributes changes asynchronously based on notifica-
tions that peers can register.

The proposed algorithms allow us to scale the system to
large scale mapping problems while keeping communication
between peers at a minimum.

Map API

Application

Executables

Fig. 2: The three-layer architecture of Map API projects: At the bottom,
Map API provides the generic map data management discussed in this
paper. Different projects using Map API can define libraries on top of it, in
the application layer. Finally, the agents involved in a mapping project use
different executables on top of the application layer.

II. METHODOLOGY

A. System architecture

The Map API back-end forms the base of a three-layer
architecture (see Fig. 2): At the bottom, the system provides
the general distributed functionality described in this paper.
In an intermediate layer, which we call the application layer,
a set of mapping methods provide several data structures
and libraries based on Map API. Finally, the top layer is
comprised of executables for the different roles in a mapping
application. The intermediate and top layer can be fully
customized by the users. In particular, the application layer
defines tables, which is how data types are organized in Map
API. As a proof of concept we have implemented a visual-
inertial mapping framework on top of Map API [17].

B. Data distribution

The optimal granularity in which to share data addition and
updates between peers lies somewhere between the extremes
of notifying all peers about all changes or individual peers
on a single item basis. Finding the right trade-off is crucial:
Sharing a monolithic map with everyone is infeasible from a
network bandwidth point. A too fine granularity, for instance
by packaging every item individually, leads to the situation in
which the memory use is dominated by metadata. We there-
fore suggest to split data from each table into application-
defined sub-portions, so called Map API data chunks. The
size of chunks should be chosen in a way that in a typical use
case, only a handful of chunks need to be loaded. Each peer
that is interested in data from some chunk must participate
in it. Participating in a chunk implies that the peer must
replicate the current state of the chunk and provide its data
to new peers that are interested in the chunk. On the other
hand, it implies that the peer gets informed about updates
in the chunk immediately and incrementally. Thus, the latest
state of the chunk is updated in the network without polling
and therefore implies a small networking footprint.

C. Concurrent data access

A main goal of Map API is the abstraction of the complex-
ity of distributed concurrency. The primary challenge in this
area is to provide consistent and concurrent data access. At
the core, this is about handling the situation in which several

peers concurrently try to modify data while others try to read
it. For such problems mutual exclusion locks are the solution
of choice for single-process-multiple-threads applications.
These locks ensure that only one thread at a time can
execute critical code sections and thus ensure consistency
by protecting data from corruption. The naive approach to
handling concurrency in a distributed system like Map API
could thus consist of acquiring a global lock on the map
before data is modified or read. However, mutual exclusion
on the map is not practical for collaborative mapping for
several reasons: Many operations in large scale mapping,
such as map optimization by bundle-adjustment [18], can last
several minutes. If the system uses mutual exclusion, even
with fine lock granularities, other peers are excluded from
data access while a peer is working on the data. This includes
adding completely new data to the map or reading it for
visualization purposes, both being actions which commonly
require access to the map for a short time span only.

Instead, a much better approach than mutual exclusion
is provided by Optimistic Concurrency Control with trans-
actions (see Fig. 3): A peer that runs an algorithm that
modifies data items does not apply these changes to the
map right away. Instead, it keeps a log of changes that it
wants to apply in a transaction. Only once a consistent set
of changes is complete, the attempt to commit the transaction
is made, which then writes the change set to the map.
This means that only for the short time during transaction
commit a distributed lock needs to be acquired. Because
we lock the map only when we want to write the changes
from a transaction, we have to make sure the state of the
map which is read is consistent. Each transaction therefore
defines a begin time, ensuring that all data that is accessed
through the transaction comes from the state of the map
as it was at that time, independently of what happens to
the map in the meantime. This model allows us to acquire
exclusive locks only for committing the transaction and
synchronizing the new state of the map with other peers.
After the synchronization, the updated map then forms the
basis for transactions at a later time. During the commit, Map
API verifies that no updates have happened on the same data
since the transaction begin time. Only if that is the case the
changes are applied to the database. Otherwise, a conflict
exists for which Map API provides an interface similar to
conflict resolution in Git: If a commit fails, the application
can retrieve both new versions of all conflicting items, as
well as a transaction containing the log of the non-conflicting
items. With those, the user of Map API is free to implement
conflict resolution tailored to the given application.

D. Distributed concurrency

Given the above requirements it is pretty straightforward to
implement Optimistic Concurrency Control on a centralized
unit. The implementation in a decentralized system how-
ever poses additional challenges. In a distributed system all
communication between peers, including the acquisition of
locks, takes place over the network. Therefore, no locking
command is atomic as it would be commonly the case

op.

t

x

A B C D D

ta

tb

Fig. 3: On the left, an illustration of conflict detection in Map API. The
semi-transparent overlapping boxes depict views, which are used by one
agent to operate on B and C and another agent to operate on C and D.
Time evolves from top to bottom. The time lines of data items A – D are
shown, circles indicate updates of the respective item. The views begin at
their begin time, indicated by horizontal lines, and end with the simultaneous
update of the modified data items. In the shown situation, the commit on
the right side fails because C has been updated since the view begin time.
The right side of the figure highlights the problems caused by time delays in
a naive implementation of a message passing algorithm. Reading D would
have different results at ta and tb.

on a single machine. This implies that first and foremost
consensus needs to be achieved among peers w.r.t. acquiring
mutual exclusion locks over the network. State-of-the-art
distributed applications, such as Google Chubby [19] achieve
this using distributed consensus protocols like Paxos [14]
or Raft [15]. Because these protocols are notoriously hard
to integrate [19], Map API currently uses a simpler ap-
proach based on the assumption of no unannounced loss
of connectivity. We implemented a distributed reader-writer
lock to control access at the level of chunks: Reader-writer
locks are based on the observation that while conflicts may
arise in write-write and read-write contention, they do not
arise when two peers try to read the same data. Because
of this, it is possible to implement distributed reader-writer
locks such that network communication is only necessary
when the lock is acquired in write-mode: Peers that want
to perform read operations acquire a read-lock locally. Only
for write operations all other peers of a chunk are asked for
permission. If a peer is currently reading from the affected
chunk, write lock acquisition is deferred until the read-lock
is released. Similarly, read locks can only be acquired if no
write-lock has been granted. Given that an algorithm operates
on multiple chunks simultaneously, care must be taken to
avoid deadlocks. We solve this by using the well-known
approach of imposing a lock ordering.

A second challenge is posed by the fact that distributed
systems exhibit message delay; messages do not arrive
immediately after they are sent, as shown on the right side
of Fig. 3. It could therefore be possible that data-updates
from a commit that has happened a long time ago arrive at a
peer only after it has started another transaction, leading to
an inconsistent view. The solution to this is to synchronize
time between peers both before and after defining the commit
time. Time synchronization can be accomplished at the same
time as the write-lock is acquired and released, respectively.

Fig. 4: A 2-D spatial index. A bounded space is subdivided into regular
cells, which are deterministically assigned DHT keys. Data is registered
using bounding boxes (dashed outlines) and assigned to the overlapping
cells. Similarly, a query (solid bold outline) returns all data references from
the cells that it itself overlaps (shaded boxes). The data in the lightly shaded
box is returned by the query, although not overlapping the query.

We adopt Logical Clocks [20], which are monotonically
increasing counters that capture chronological and causal
relationships between data. These counters dictate clock
synchronization inherently with message exchange.

E. Distributed lookup

As mentioned earlier, all data from tables is divided into
chunks to control the granularity of data-sharing and data-
locking. Access to a chunk can be obtained trivially by
knowing both its identity and any peer that participates in
it. Unfortunately, a brief reflection upon mapping use cases
shows that the condition when both are known is rarely met.
We therefore need different, more abstract ways of accessing
chunks to start participation.

We distinguish the following ordinary access types:
• By peer: The identity of a peer is known, but not the

identity of the requested data. This can for instance be
the case for entities overseeing a field operation where
new data is gathered.

• By reference: The identity of a piece of data is known,
but not that of any peer that holds it. This can happen
when a peer stumbles upon an unknown data reference,
e.g. during map-structure traversal.

• By extrinsics: Neither the identity of the piece of data
nor of any peer holding it is known, but the requested
data can be defined in terms of values extrinsic to Map
API. For instance, new users of a Map API application
might be interested in obtaining data from a certain GPS
bounding box.

Providing access by peer is trivial: One only needs to
request from that peer to send all the data it generates.

Access by reference and access by extrinsics is more
interesting: We reduce the problem of access by reference
to mapping of references to peers and the problem of access
by extrinsics to mapping of extrinsics to data reference lists.
In particular, access by extrinsics is achieved by subdividing
the lookup space into regular cells and assigning each cell
a space-reference deterministically (see Fig. 4). With that
reduction, we can apply Distributed Hash Tables (DHTs)
to both problems. DHTs are state of the art protocols in

x

x x

y

y?

DHT index

Fig. 5: Data in Map API. Using Map API only obligates providing a
lightweight portion of the Distributed Hash Table index (denoted by circles).
Heavy-weight mapping data is held only by peers interested in it. Here,
the two quadrotors and the ground robot share data x. Consensus on
modifications of x is established among them, as indicated by solid lines.
A data-reference based or spatial DHT index is used to locate the data y.

distributed computing that allow O(log n) key-value map-
ping operations while evenly distributing the work and data
load among the participants. They are good for lookup
of constant values or values whose consistency is not of
utmost importance, but not for maintaining consistent state.
However this information is sufficient for lookup, since given
a reference a single peer is sufficient to provide data access.
For Map API, we have chosen to use the Chord DHT
protocol [11], which at the time of writing seems to be the
most widespread. As with consensus, we envision rendering
the system robust to connection loss in future iterations using
more complicated variants of Chord that attempt to approach
perfect availability [21]. To summarize, the interplay between
distribution, consensus and lookup is shown in Fig. 5.

F. Update notification and Triggers

If a peer participates in a chunk, updates are automatically
sent to the peer as described in Section II-B. However,
what about situations in which a peer is interested in new
insertions or updates to data that it does not (yet) participate
in or cannot hold permanently? Providing notifications in
such situations would be very useful if a robot is interested
in updates to map data within a particular region, for instance
to update path-planning results. Updates to this area should
be filtered to extract only the relevant information an agent
needs which is then sent to that agent.

We formalize this concept using a mechanism called
“Trigger”. A trigger is an update notification request that
an agent can attach to a piece of information. On changes
to this data the trigger function is executed on the updated
information such that the relevant parts can be identified
before sending data to the peer that registered the trigger.
In this way triggers represent a concept of information flow
control in the distributed system.

The most trivial such function takes the entire data that lies
within a spatial region and pushes all changes to the peer.
We however see the main strength of this concept in more
complex triggers, which for instance apply sophisticated
filters on the data or even pre-process it before sending. The
possibility to remotely filter and pre-process data is key to
keeping the bandwidth usage low, especially as the size of

Fig. 6: This figure compares the trigger system suggested for Map API
(right) with a polling based approch (left). On the left side, R continuously
polls a spatial index to stay updated about a region. It must then fetch all the
data from previously unseen references and filter it according to its needs.
On the right side, we depict the advantages of triggers. Here R sends the
blueprint of its filter once to the spatial index. Then, if agents register new
data in the spatial index, the spatial index sends them all its filter blueprints.
The agents then apply the filters locally and only send the data to R if it
passes the filter. Thus, less data is sent over the network (here, one chunk
instead of two).

maps and the number of agents grow (see Fig. 6). In the
current version of Map API we have only implemented an
interface to attach callbacks to updates in chunks currently
co-owned. Triggers that are run entirely remotely and support
complex spatial and other filters are subject to future work.

III. EXPERIMENTS

To demonstrate and validate Map API, we have developed
a visual-inertial mapping application, which takes mapping
data from Google Tango devices [22] and represents it
using a pose-graph and sparse landmarks. Everything has
been implemented in C++11, using libraries such as Eigen,
Protocol Buffers and ZeroMQ. One of the main contri-
butions of Map API is providing a decentralized way of
collaborating on a global map. We therefore first present
a simple experiment that validates the claim that providing
this functionality is worthwhile. Because most of Map API
deals with concurrency, it is vital to verify and validate its
implementation. Therefore, we have put important features
in a carefully designed testing framework which allows
continuous integration and monitoring throughout Map API
development. A simple example of such a test is shown
in algorithm 1. Alas, most of such tests concerning conflicts
in concurrency, consistent distributed consensus and version
control work but do not provide much interesting data for
analysis. One of the earlier experiments we have performed
on the distributed locking protocol investigated the effect of
low-level design decisions on the performance in situations
with high write-contention. However, we have found that
such high write-contentions do not fit the usual Map API
use case and are thus not compelled to discuss the results
here. In contrast, methods for lookup provide a more fruitful
base for further analysis. Thus, we present an experiment on
the spatial lookup method and use the results to discuss how
it can be best used in different scenarios. Independently of
the experiments presented here, we have developed a project
on lifelong mapping on top of Map API [17].

Algorithm 1 This procedure is executed on P peers in par-
allel to test decentralized conflict detection. If decentralized
conflict detection works correctly, the final value of a is
consistently a0 + PN .

procedure VIEWTEST(Table T)
for i ∈ {1;N} do

while Commit fails do
v ← new view(t)
n← v.get(T , a)
v.update(T , a, n+ 1)
v.commit()

end while
end for

end procedure

A. Experimental setup

For the first experiment, where we show that having
decentralized processing units is beneficial, we choose the
scenario presented in Fig. 1. There, we have a robotic
operation that is carried out over three rooms spanning a full
floor of an office building. We emulate the situation where
the big, merged datasets (red, blue, cyan) are created by
ground robots and the smaller datasets are created by aerial
robots. To benchmark centralized serial processing against
decentralized parallel processing, we use the operation of
registering the data from the aerial robots with the data from
the ground robots, for which we use loop closure [23] and
bundle adjustment optimization [18]. For the experiment, we
compare the run time of running the registration operation
on the three emulated ground robots versus a central instance
with serialized map processing. To represent the difference of
computational power between ground robots and central unit,
and to involve some actual networking in the experiment, the
ground robots have been emulated on three separate Amazon
EC2 m3.medium instances. These instances each provide
a single hyperthread on a 2.5 GHz Intel Xeon, while the
central instance provides eight hyperthreads on a 3.3 GHz
Intel Xeon. However, in addition to performing the map
registration computation, we also simulate the bandwidth
between the peers. Assuming that a good direct link can be
established between aerial robots and nearby ground robots,
but that the link between ground robots and the central is of
worse quality, we set the former bandwidth to 1 MBps and
the latter to 100 kBps.

For the experiment characterizing spatial lookup, we
take five datasets collected on four floors of a building.
Each dataset has been individually optimized using bundle-
adjustment and loop closure optimization, and the datasets
have then been co-registered with each other. After regis-
tering the total bounding box has been calculated and used
as a base for a spatial index, while the bounding boxes of
the individual datasets have been used to register them in
the spatial index. Using the spatial index, 30 queries of
randomly placed cubes of 3 m have been performed. For
each query, a separate peer starts up, performs the query,

0 200 400 600 800 1000 1200 1400 1600

Central

Submap 1

Submap 2

Submap 3

Time [s]

Fig. 7: Time, in seconds, taken for processing the same data with a
decentralized setup versus a centralized one, where neighboring aerial and
ground robots have a 1 MBps link versus a 100 kBps link between aerial
robots and centralized unit. The colors correspond to the ground robots
from Fig. 1. Darker colors denote data transfer while lighter colors denote
data processing.

Cell count

10 1 10 2 10 3 10 4

A
v
e

ra
g

e
 c

h
u

n
k
 c

o
u

n
t

re
tu

rn
e

d
 b

y
 r

e
q

u
e

s
t

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

L
o

o
k
u

p
 t

im
e

 w
it
h

 d
if
fe

re
n

t
n

e
tw

o
rk

 l
a

te
n

c
ie

s
 [

s
]

0

0.5

1

1.5

2

2.5

3

3.5

4

0 ms

1 ms

2 ms

3 ms

Fig. 8: Effect of granularity on the spatial index performance. A finer
granularity generally decreases the amount of returned data while increasing
the duration of a request. The latter also increases with network latency.

and loads the resulting chunks. We are most interested in
seeing the effect of choosing different cell granularities. As
with locking, we expect that a lower granularity results in
more concise responses while increasing the query overhead.
Other parameters that we have varied are the amount of
by-standing peers (affects chord index performance) and
simulated network latency.

IV. RESULTS

Fig. 7 shows the results for the experiment of parallel
decentralized versus serial centralized map processing. We
can see that even using less computational power, the de-
centralized entities have finished registering the data within
about ten minutes (vertical line), while the central entity
takes about 25 minutes to process all the data. Since in
our example data transfers dominate the time budget, even
parallelizing the processing on the central unit would still be
much slower than the distributed setup. Apart from proving
the point about decentralization in such network conditions,
this experiment also shows that Map API can be successfully
executed among peers in the cloud, in this case linking a peer
from Switzerland to peers located in Ireland.

Fig. 8 shows the most relevant results of the experiments
regarding spatial lookup. As shown, the amount of missions

a query returns generally decreases with a finer granularity.
In contrast, the time it takes to process a query increases
linearly with the cell count. This meets our expectations,
since the amount of cells in the same bounding box increases
linearly as the total cell density increases. Because each
cell is mapped to a Chord index datum, the amount of
Chord requests increases only linearly. Finally, the query
time increases linearly with network latency and inversely
linear with bandwidth as well. An optimal cell count is one
that minimizes the total time of a query, which consists of
requesting references to data that could potentially overlap
with the query, and retrieving those data by reference. Thus,
given the above results, we can conclude that there is no
general rule for an optimal cell count. Instead, one needs to
take into account system properties like expected dataset size,
network bandwidth and latency and values that are harder to
model, such as the density of registered data bounding boxes
in areas typical for requests. On one hand, for instance, with
big datasets and low bandwidth, yet small latency, it is worth
having more cells, such as to only obtain the required data.
On the other hand, with high latency but high bandwidth and
smaller datasets, coarser cells could be preferable because the
cost of retrieving irrelevant data is relatively low. Indeed, one
could also think of attaching the actual bounding boxes as
metadata to the data references in the spatial cell and to the
Chord queries sent to the peers responsible for each cell, as
discussed in Section II-F. Hence, the filtering of irrelevant
data could be delegated to the remote peer, trading computing
power for less network load. This, however, would also lead
to increased memory overhead for the spatial index data
itself.

V. CONCLUSION

In this paper, we have described a back-end for distributed
collaborative mapping, which:

• Distributes a global map that agents can lookup and
work on concurrently.

• Enables dynamic data ownership using distributed con-
sensus and optimistic concurrency control.

• Optimizes network usage using Triggers which imple-
ment distributed filters and update notifications.

A first version of this back-end exhibiting most features
has been implemented and successfully tested, locally and
on the cloud. Next steps include the full implementation of
the mentioned features and rendering Map API robust to
unannounced peer loss by more fully embracing work from
the domain of Distributed Computing. Although Map API
has already been used for a project showcasing long-term
mapping, we are eager to integrate it with more collaborative
mapping schemes, in particular ones doing mapping on a
large scale. While this article has not treated the algorithms
performing collaborative state estimation itself, we are con-
fident that providing the flexible way of collaborating on
mapping data contributed by Map API has the potential to
simplify the integration of existing mapping schemes or even
unlock new ones.

VI. ACKNOWLEDGMENTS

The research leading to these results has received funding
from Google’s project Tango and Willow Garage.

The authors are grateful to the help of Christian Decker
from ETHZ’s Distributed Computing Group for the fruitful
discussions about Distributed Computing and to Professor
Auke Ijspeert from EPFL’s Biorobotics Laboratory for co-
supervising the associated Master Thesis.

Furthermore, we thank Francis Colas and Paul Furgale for
feedback on early design drafts.

VII. API

The following is a simplified example showcasing Map
API in use. The first half of the code shows what is typically
supposed to happen in the application layer - table definition.
The second half shows the implementation of the inner loop
of algorithm 1, applied to the subvalue of a data structure.

MAP_API_REVISION_PROTOBUF (proto : : DataType) ;
enum Fields { kField } ;

map_api : : TableDescriptor descriptor ;
descriptor .setName (” m y t a b l e ”) ;
descriptor .addField<proto : : DataType>(kField) ;
map_api : : NetTable∗ my_table = map_api : :←↩

NetTableManager : : addTable (descriptor) ;

my_table−>getChunk (chunk_id) ; / / Assumed g i v e n .
map_api : : Transaction transaction ;
map_api : : Revision revision = transaction .getById (←↩

my_table , item_id) ; / / Assumed g i v e n .
proto : : DataType data ;
revision .get (kField , &data) ;
data .set_some_subvalue (data .some_subvalue () + 1) ;
revision .set (kField , data) ;
transaction .update (my_table , revision) ;
i f (transaction .commit ()) {
LOG (INFO) << ”Commit s u c c e e d e d ! ” ;

}

REFERENCES

[1] D. Fox, W. Burgard, H. Kruppa, and S. Thrun, “A
probabilistic approach to collaborative multi-robot lo-
calization,” Autonomous robots, 2000.

[2] A. Martinelli, “Improving the precision on multi robot
localization by using a series of filters hierarchi-
cally distributed,” in Intelligent Robots and Systems,
IEEE/RSJ International Conference on. IEEE, 2007.

[3] N. Trawny, S. I. Roumeliotis, and G. B. Giannakis,
“Cooperative multi-robot localization under communi-
cation constraints,” in Robotics and Automation, IEEE
International Conference on. IEEE, 2009.

[4] L. C. Carrillo-Arce, E. D. Nerurkar, J. L. Gordillo,
and S. I. Roumeliotis, “Decentralized multi-robot co-
operative localization using covariance intersection,”
in Intelligent Robots and Systems (IROS), IEEE/RSJ
International Conference on, 2013.

[5] L. Riazuelo, J. Civera, and J. Montiel, “C2tam: A
cloud framework for cooperative tracking and map-
ping,” Robotics and Autonomous Systems, 2014.

[6] C. Forster, S. Lynen, L. Kneip, and D. Scaramuzza,
“Collaborative monocular slam with multiple micro

aerial vehicles,” in Intelligent Robots and Systems
(IROS), IEEE/RSJ International Conference on, 2013.

[7] M. Waibel, M. Beetz, et al., “Roboearth,” Robotics
Automation Magazine, IEEE, 2011.

[8] G. Mohanarajah, V. Usenko, M. Singh, M. Waibel, and
R. DAndrea, “Cloud-based collaborative 3d mapping in
real-time with low-cost robots,” IEEE Transactions on
Automation Science and Engineering, 2014.

[9] A. Cunningham, V. Indelman, and F. Dellaert, “Ddf-
sam 2.0: Consistent distributed smoothing and map-
ping,” in Robotics and Automation (ICRA), IEEE In-
ternational Conference on, 2013.

[10] T. A. Vidal-Calleja, C. Berger, J. Solà, and S. Lacroix,
“Large scale multiple robot visual mapping with hetero-
geneous landmarks in semi-structured terrain,” Robotics
and Autonomous Systems, 2011.

[11] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek,
and H. Balakrishnan, “Chord: A scalable peer-to-peer
lookup service for internet applications,” SIGCOMM
Comput. Commun. Rev., 2001.

[12] W. Ren and R. Beard, Distributed consensus in multi-
vehicle cooperative control: theory and applications.
Springer, 2007.

[13] E. Montijano and C. Sagues, “Distributed multi-camera
visual mapping using topological maps of planar re-
gions,” Pattern Recognition, 2011.

[14] L. Lamport, “Paxos made simple,” ACM Sigact News,
2001.

[15] D. Ongaro and J. Ousterhout, “In search of an under-
standable consensus algorithm,” in Proc ATC, USENIX
Annual Technical Conference, 2014.

[16] K. P. Eswaran, “Aspects of a trigger subsystem in
an integrated database system,” in Proceedings of the
2nd international conference on Software engineering,
1976.

[17] M. Dymczyk, S. Lynen, T. Cieslewski, M. Bosse,
R. Siegwart, and P. Furgale, “The gist of maps –
summarizing experience for lifelong localization,” in
Robotics and Automation (ICRA), IEEE International
Conference on, 2015.

[18] B. Triggs, P. McLauchlan, R. Hartley, and A. Fitzgib-
bon, “Bundle adjustment — a modern synthesis,” in
Vision Algorithms: Theory and Practice, 2000.

[19] M. Burrows, “The chubby lock service for loosely-
coupled distributed systems,” in Proceedings of the 7th
symposium on Operating systems design and implemen-
tation. USENIX Association, 2006.

[20] L. Lamport, “Time, clocks, and the ordering of events
in a distributed system,” Commun. ACM, 1978.

[21] “How to improve the reliability of chord?” in On the
Move to Meaningful Internet Systems: OTM Workshops,
2008.

[22] J. C. Lee, R. Dugan, et al., “Google project tango,”
https://www.google.com/atap/projecttango/#project.

[23] S. Lynen, M. Bosse, P. Furgale, and R. Siegwart,
“Placeless place-recognition,” in 3D Vision (3DV), 2nd
International Conference on, 2014.

https://www.google.com/atap/projecttango/#project

	Introduction
	Methodology
	System architecture
	Data distribution
	Concurrent data access
	Distributed concurrency
	Distributed lookup
	Update notification and Triggers

	Experiments
	Experimental setup

	Results
	Conclusion
	Acknowledgments
	API

